CIVIL ENGINEERS • LAND SURVEYORS • SITE PLANNERS

1755 MERIDEN-WATERBURY ROAD, BOX 337, MILLDALE, CONNECTICUT 06467-0337 PHONE (860) 621-3638 • FAX (860) 621-9609 • EMAIL INFO@KRATZERTJONES.COM AN EQUAL OPPORTUNITY EMPLOYER - M - F

STORMWATER MANAGEMENT REPORT 9/30/21

Including:

2, 5, 10, 25, and 100-Year Storms

Prepared for:

CURTISS STREET INDUSTRIAL PARK 136 Curtiss Street Southington, CT

Andrew J. Quirk, P.E.

CIVIL ENGINEERS LAND SURVEYORS ٠ SITE PLANNERS •

1755 MERIDEN-WATERBURY ROAD, BOX 337, MILLDALE, CONNECTICUT 06467-0337 PHONE (860) 621-3638 • FAX (860) 621-9609 • EMAIL INFO@KRATZERTJONES.COM

AN EQUAL OPPORTUNITY EMPLOYER - M - F

EXECUTIVE SUMMARY

This report summarizes the hydrologic changes and management of stormwater associated with the construction of an industrial subdivision. The existing site land coverage is presently an industrial use with pavement and buildings but the lack of a formalized stormwater system. The proposed development will consist of 12 industrial lots on a public road with a stormwater system designed to meet Town standards. The Stormwater Management Plan will include measures to control increases in runoff and address water quality concerns associated with the development of the site.

Watershed Description

In the pre-development condition, the site is described by one watershed: "EX-1" draining easterly towards the Quinnipiac River including the Ivy Drive drainage system. (See Sheet WS-1) In the post-development condition, the site is described one similar watershed including the upgradient Ivy Drive drainage system as well as the developed site drainage collected and directed to Stormwater Basin #1. (See Sheet WS-2) Hydrologic routing has been performed to compare the stormwater conditions for the total pre- and post-development combined watersheds. Roofwater is to be directed to recharge the groundwater through underground galleys for each of the lots. The stormwater model is based upon each of the 12 lots providing retention for 14,500 sf of impervious area with 744 cubic feet of groundwater recharge storage.

ZIRO (Zero Increase in Peak Discharge Runoff Rates) is achieved through the 100-year storm event each of the watershed areas.

Erosions and Sedimentation Control

The goal of the erosion and sedimentation controls on the site is to maintain water quality to runoff and to minimize erosion to areas both on and off site. In order to accomplish these goals, several erosion control measures are proposed. The plans have been developed in accordance with the 2004 Sedimentation and Erosion Control Guidelines and the Stormwater Quality Manual.

Water quality of the runoff will be provided through the use of **Best Management Practice** (BMP) erosion controls during construction. A detailed construction sequence and erosion control measures have been included with the plans. Silt fences are proposed down slope of areas proposed to be disturbed. Inlet protection devices will be installed around all catch basins during construction.

Following construction, water quality shall be maintained by grassed swales and a stormwater basin that includes a sediment forebay and micropool with a rip rap filter berm to retain sediment prior to discharge.

CIVIL ENGINEERS • LAND SURVEYORS • SITE PLANNERS

1755 MERIDEN-WATERBURY ROAD, BOX 337, MILLDALE, CONNECTICUT 06467-0337 PHONE (860) 621-3638 • FAX (860) 621-9609 • EMAIL INFO@KRATZERTJONES.COM

AN EQUAL OPPORTUNITY EMPLOYER - M - F

Model Formulation

Pre-development and post-development hydrographs were developed using the Rational Method. C values were derived based on land cover and the hydrologic soil groups. Time of concentration values were computed using the TR-55 method which takes into account length of flow-path, basin slope and curve number. The time of concentration calculations are included in this report. Storm routing was performed for the 2-year, 10-year, 25-year, 50-year, and 100-year storm events. For pipe sizing, the runoff rates were determined using the rational formula with the times of concentrations computed using the TR-55 method.

CIVIL ENGINEERS • LAND SURVEYORS • SITE PLANNERS

1755 MERIDEN-WATERBURY ROAD, BOX 337, MILLDALE, CONNECTICUT 06467-0337 PHONE (860) 621-3638 • FAX (860) 621-9609 • EMAIL INFO@KRATZERTJONES.COM

AN EQUAL OPPORTUNITY EMPLOYER - M - F

Summary of Peak Discharge Rates

WATERSHED #1

Values shown are in Runoff Volumes in Cubic Feet per Second (CFS)

Storm Event	Pre-Development	Post-Development	∆ (%)
2-year	29.2	28.7	-0.5 (-2%)
5-year	37.4	36.7	-0.7 (-2%)
10-year	44.1	43.3	-0.8 (-2%)
25-year	53.2	52.4	-0.8(-2%)
100-year	67.5	66.5	-1.0 (-1%)

CURTISS STREET INDUSTRIAL PARK

SOUTHINGTON, CT

COMPOSITE 'C' CALCULATIONS:

		AREAS (Acres)			
		PRE-DEVELOPMENT	POST- DEVELOPMENT		
COVERAGE AND SOIL TYPE	С	EX #1	PR #1		
Residential 1-2 units per acre - Type B Soil	0.36	22.00	22.00		
Residential 1-2 units per acre - Type C Soil	0.40	2.50	2.50		
Residential 2-3 units per acre - Type D Soil	0.44	6.30	6.30		
Open Space Good Condition - Type A Soil	0.30	0.25	1.75		
Open Space Good Condition - Type B Soil	0.34	0.30	7.75		
Woods Good Condition - Type A Soil	0.26	0.35	0.30		
Woods Good Condition - Type B Soil	0.30	16.40	5.20		
Impervious Areas (Homes, Drives, Roads)	0.95	4.10	6.40		
Retained Impervious Areas (Groundwater Recharge Units for 14,500 sf for 12 lots)			4.00		
Area (Ac.)*		52.20	48.20		
'C' WEIGHTED		0.40	0.39		

* Area excludes retained impervious areas

RETAINED IMPERVIOUS AREA - 14,500 SF FOR EACH OF THE 12 LOTS

GROUNDWATER RECHARGE CALCULATIONS (GRv):

GRv = (P) (D) (I) / 12

PROPOSED:	744	Groundwater Recharge volume (cf)
	725	Groundwater Recharge volume (cf)
GRv =	0.0166	Groundwater Recharge volume (ac-ft)
I =	14,500	Impervious Area (sf)
D =	0.60	Recharge Factor - Primarily Type A soils
P =	1.0	90% Rainfall Event (in)

24 Units of SC-310 chambers at 31.0 cf per chamber

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
23A	Sudbury sandy loam, 0 to 5 percent slopes	В	1.2	2.3%
30B	Branford silt loam, 3 to 8 percent slopes	В	1.7	3.2%
35B	Penwood loamy sand, 3 to 8 percent slopes	A	0.5	0.9%
37C	Manchester gravelly sandy loam, 3 to 15 percent slopes	A	6.2	12.0%
42C	Ludlow silt loam, 2 to 15 percent slopes, extremely stony	С	0.3	0.5%
63B	Cheshire fine sandy loam, 3 to 8 percent slopes	В	11.1	21.3%
63C	Cheshire fine sandy loam, 8 to 15 percent slopes	В	2.7	5.1%
65C	Cheshire fine sandy loam, 3 to 15 percent slopes, extremely stony	В	19.0	36.6%
87B	Wethersfield loam, 3 to 8 percent slopes	С	2.7	5.2%
103	Rippowam fine sandy loam	B/D	0.2	0.5%
263C	Cheshire-Urban land complex, 8 to 15 percent slopes	D	6.5	12.6%
Totals for Area of Inter	est		52.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Hydraflow Table of Contents

Hydraflow Hydrographs by Intelisolve v9.1

Hydrograph Return Period Recap	2
--------------------------------	---

2 - Year

Summary Report	3
Hvdrograph Reports	4
Hydrograph No. 1. Dekalb. EX#1	4
TR-55 Tc Worksheet	5
Hvdrograph No. 2. Dekalb. PR#1	6
TR-55 Tc Worksheet	7
Hydrograph No. 3. Reservoir. STORM BASIN #1 ROUTING	8
Pond Report - BASIN #1	9
TR-55 Tc Worksheet Hydrograph No. 2, Dekalb, PR#1 TR-55 Tc Worksheet Hydrograph No. 3, Reservoir, STORM BASIN #1 ROUTING Pond Report - BASIN #1	5 6 7 8 9

5 - Year

Summary Report	11
Hydrograph Reports	12
Hydrograph No. 1, Dekalb, EX#1	12
Hydrograph No. 2, Dekalb, PR#1	13
Hydrograph No. 3, Reservoir, STORM BASIN #1 ROUTING	14

10 - Year

Summary Report	15
Hydrograph Reports	16
Hydrograph No. 1, Dekalb, EX#1	16
Hydrograph No. 2, Dekalb, PR#1	17
Hydrograph No. 3, Reservoir, STORM BASIN #1 ROUTING	18

25 - Year

. 19
. 20
. 20
. 21
. 22

100 - Year

Summary Report	23
Hydrograph Reports	24
Hydrograph No. 1, Dekalb, EX#1	24
Hydrograph No. 2, Dekalb, PR#1	25
Hydrograph No. 3, Reservoir, STORM BASIN #1 ROUTING	26
DF Report	27

8

Legend

<u>Hyd.</u>	<u>Origin</u>	Description
1	Dekalb	EX#1
2	Dekalb	PR#1
3	Reservoir	STORM BASIN #1 ROUTING

Project: RATIONAL.gpw

Hydrograph Return Period Recap

Hydraflow Hydrographs by Intelisolve v9.1

Hyd.	Hydrograph	Inflow	Peak Outflow (cfs)						Hydrograph		
NO.	type (origin)	Hyd(s)	1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	description
1	Dekalb			29.21		37.39	44.05	53.18		67.47	EX#1
2	Dekalb			29.23		37.45	44.13	53.30		67.63	PR#1
3	Reservoir	2		28.70		36.73	43.34	52.42		66.53	STORM BASIN #1 ROUTING
			1	I	1		1	1			

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	Dekalb	29.21	1	235	172,181				EX#1
2	Dekalb	29.23	1	200	146,599				PR#1
3	Reservoir	28.70	1	201	146,036	2	157.96	9,954	STORM BASIN #1 ROUTING
3	Reservoir	28.70	1	201	146,036	2	157.96	9,954	STORM BASIN #1 ROUTING
RA	TIONAL.gpw				Return P	eriod: 2 Ye	ar	Monday, O	ct 4, 2021

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

EX#1

Hydrograph type	= Dekalb	Peak discharge	= 29.21 cfs
Storm frequency	= 2 yrs	Time to peak	= 235 min
Time interval	= 1 min	Hyd. volume	= 172,181 cuft
Drainage area	= 52.200 ac	Runoff coeff.	= 0.4
Intensity	= 1.399 in/hr	Tc by TR55	= 47.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

Hyd. No. 1

EX#1

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft)	= 0.410 = 170.0		0.240 0.0		0.011 0.0		
Two-year 24-hr precip. (in) Land slope (%)	= 3.40 = 2.10		0.00 0.00		0.00 0.00		
Travel Time (min)	= 31.86	+	0.00	+	0.00	=	31.86
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 145.00 = 1.40 = Unpaved = 1.91	d	55.00 1.00 Paved 2.03		1124.0 2.00 Unpave 2.28	0 ed	
Travel Time (min)	= 1.27	+	0.45	+	8.21	=	9.93
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 1.20 = 3.90 = 5.00 = 0.015 = 10.08 = 380.0		1.20 3.90 3.00 0.015 7.81 1975.0		0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.63	+	4.21	+	0.00	=	4.84
Total Travel Time, Tc							47.00 min

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

PR#1

Hydrograph type	= Dekalb	Peak discharge	= 29.23 cfs
Storm frequency	= 2 yrs	Time to peak	= 200 min
Time interval	= 1 min	Hyd. volume	= 146,599 cuft
Drainage area	= 48.200 ac	Runoff coeff.	= 0.39
Intensity	= 1.555 in/hr	Tc by TR55	= 40.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

6

Hyd. No. 2

PR#1

<u>Description</u>		<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow								
Manning's n-value	=	0.410		0.240		0.011		
Flow length (ft)	=	170.0		0.0		0.0		
Two-year 24-hr precip. (in)	=	3.40		0.00		0.00		
Land slope (%)	=	2.10		0.00		0.00		
Travel Time (min)	=	31.86	+	0.00	+	0.00	=	31.86
Shallow Concentrated Flow								
Flow length (ft)	=	145.00		55.00		0.00		
Watercourse slope (%)	=	1.40		1.00		0.00		
Surface description	=	Unpaved	ł	Paved		Unpave	ed	
Average velocity (ft/s)	=	1.91		2.03		0.00		
Travel Time (min)	=	1.27	+	0.45	+	0.00	=	1.72
Channel Flow								
X sectional flow area (sqft)	=	1.20		1.20		3.10		
Wetted perimeter (ft)	=	3.90		3.90		6.30		
Channel slope (%)	=	5.00		3.00		2.00		
Manning's n-value	=	0.015		0.015		0.015		
Velocity (ft/s)	=	10.08		7.81		8.74		
Flow length (ft)	=	380.0		1975.0		824.0		
Travel Time (min)	=	0.63	+	4.21	+	1.57	=	6.41
Total Travel Time, Tc								40.00 min

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

STORM BASIN #1 ROUTING

Hydrograph type	= Reservoir	Peak discharge	= 28.70 cfs
Storm frequency	= 2 yrs	Time to peak	= 201 min
Time interval	= 1 min	Hyd. volume	= 146,036 cuft
Inflow hyd. No.	= 2 - PR#1	Max. Elevation	= 157.96 ft
Reservoir name	= BASIN #1	Max. Storage	= 9,954 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.1

Pond No. 1 - BASIN #1

Pond Data

Contours - User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 155.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	155.00	429	0	0
0.50	155.50	1,963	552	552
1.00	156.00	2,688	1,158	1,709
1.50	156.50	3,439	1,528	3,237
2.00	157.00	4,215	1,910	5,147
2.50	157.50	5,015	2,304	7,452
3.00	158.00	5,843	2,712	10,163
3.50	158.50	6,714	3,136	13,300
4.00	159.00	7,639	3,585	16,885
4.50	159.50	10,000	4,396	21,281

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	15.00	0.00	0.00	Crest Len (ft)	= 5.00	15.00	0.00	0.00
Span (in)	= 36.00	15.00	0.00	0.00	Crest El. (ft)	= 157.00	157.50	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 155.50	155.50	0.00	0.00	Weir Type	= Riser	Broad		
Length (ft)	= 22.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.60	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	155.00	0.00	0.00			0.00	0.00					0.00
0.05	55	155.05	0.00	0.00			0.00	0.00					0.00
0.10	110	155.10	0.00	0.00			0.00	0.00					0.00
0.15	165	155.15	0.00	0.00			0.00	0.00					0.00
0.20	221	155.20	0.00	0.00			0.00	0.00					0.00
0.25	276	155.25	0.00	0.00			0.00	0.00					0.00
0.30	331	155.30	0.00	0.00			0.00	0.00					0.00
0.35	386	155.35	0.00	0.00			0.00	0.00					0.00
0.40	441	155.40	0.00	0.00			0.00	0.00					0.00
0.45	496	155.45	0.00	0.00			0.00	0.00					0.00
0.50	552	155.50	0.00	0.00			0.00	0.00					0.00
0.55	667	155.55	0.01 ic	0.01 ic			0.00	0.00					0.01
0.60	783	155.60	0.04 ic	0.04 ic			0.00	0.00					0.04
0.65	899	155.65	0.10 ic	0.09 ic			0.00	0.00					0.09
0.70	1,015	155.70	0.16 ic	0.16 ic			0.00	0.00					0.16
0.75	1,131	155.75	0.26 ic	0.24 ic			0.00	0.00					0.24
0.80	1,246	155.80	0.37 ic	0.34 ic			0.00	0.00					0.34
0.85	1,362	155.85	0.46 ic	0.46 ic			0.00	0.00					0.46
0.90	1,478	155.90	0.61 ic	0.59 ic			0.00	0.00					0.59
0.95	1,594	155.95	0.74 ic	0.74 ic			0.00	0.00					0.74
1.00	1,709	156.00	0.93 oc	0.89 ic			0.00	0.00					0.89
1.05	1,862	156.05	1.06 oc	1.06 ic			0.00	0.00					1.06
1.10	2,015	156.10	1.21 oc	1.21 ic			0.00	0.00					1.21
1.15	2,168	156.15	1.45 oc	1.38 ic			0.00	0.00					1.38
1.20	2,321	156.20	1.63 oc	1.57 ic			0.00	0.00					1.57
1.25	2,473	156.25	1.82 oc	1.76 ic			0.00	0.00					1.76
1.30	2,626	156.30	2.01 oc	1.97 ic			0.00	0.00					1.97
1.35	2,779	156.35	2.22 oc	2.16 ic			0.00	0.00					2.16
1.40	2,932	156.40	2.44 oc	2.36 ic			0.00	0.00					2.36
1.45	3,084	156.45	2.55 oc	2.55 ic			0.00	0.00					2.55
1.50	3,237	156.50	2.78 oc	2.78 ic			0.00	0.00					2.78
1.55	3,428	156.55	3.03 oc	2.97 ic			0.00	0.00					2.97
1.60	3,619	156.60	3.15 oc	3.15 ic			0.00	0.00					3.15
1.65	3,810	156.65	3.41 oc	3.38 ic			0.00	0.00					3.38
1.70	4,001	156.70	3.54 oc	3.54 ic			0.00	0.00					3.54
	,		-	-							Continue	es on nex	t page

BASIN #1 Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.75	4,192	156.75	3.81 oc	3.68 ic			0.00	0.00					3.68
1.80	4,383	156.80	3.94 oc	3.82 ic			0.00	0.00					3.82
1.85	4,574	156.85	3.94 oc	3.94 ic			0.00	0.00					3.94
1.90	4,765	156.90	4.08 oc	4.08 ic			0.00	0.00					4.08
1.95	4,956	156.95	4.23 oc	4.23 ic			0.00	0.00					4.23
2.00	5,147	157.00	4.37 oc	4.37 ic			0.00	0.00					4.37
2.05	5,378	157.05	4.66 oc	4.41 ic			0.19	0.00					4.60
2.10	5,608	157.10	4.96 oc	4.43 ic			0.53	0.00					4.96
2.15	5,839	157.15	5.42 oc	4.36 ic			0.97	0.00					5.33
2.20	6,069	157.20	5.89 oc	4.29 ic			1.49	0.00					5.78
2.25	6,299	157.25	6.36 oc	4.21 ic			2.08	0.00					6.29
2.30	6,530	157.30	6.85 oc	4.11 ic			2.74	0.00					6.85
2.35	6,760	157.35	7.51 oc	3.94 ic			3.45	0.00					7.38
2.40	6,991	157.40	8.00 oc	3.79 ic			4.21	0.00					8.00
2.45	7,221	157.45	8.66 oc	3.64 ic			4.90 s	0.00					8.54
2.50	7,452	157.50	9.15 oc	3.54 ic			5.53 s	0.00					9.07
2.55	7,723	157.55	9.64 oc	3.44 ic			6.12 s	0.56					10.11
2.60	7,994	157.60	10.12 oc	3.34 ic			6.67 s	1.58					11.58
2.65	8,265	157.65	10.43 oc	3.24 ic			7.19 s	2.90					13.33
2.70	8,536	157.70	10.89 oc	3.16 ic			7.73 s	4.47					15.36
2.75	8,807	157.75	11.34 oc	3.09 ic			8.25 s	6.24					17.58
2.80	9,079	157.80	11.78 oc	3.02 ic			8.75 s	8.21					19.98
2.85	9,350	157.85	12.19 oc	2.96 ic			9.24 s	10.34					22.54
2.90	9,621	157.90	12.59 oc	2.89 ic			9.70 s	12.64					25.23
2.95	9,892	157.95	12.97 oc	2.82 ic			10.14 s	15.08					28.03
3.00	10,163	158.00	13.33 oc	2.75 ic			10.55 s	17.66					30.96
3.05	10,477	158.05	13.67 oc	2.69 ic			10.98 s	20.37					34.04
3.10	10,790	158.10	13.99 oc	2.62 ic			11.36 s	23.22					37.20
3.15	11,104	158.15	14.28 oc	2.55 ic			11.72 s	26.18					40.45
3.20	11,418	158.20	14.54 oc	2.48 ic			12.06 s	29.25					43.80
3.25	11,731	158.25	14.87 oc	2.43 ic			12.43 s	32.44					47.31
3.30	12,045	158.30	15.08 oc	2.36 ic			12.71 s	35.74					50.82
3.35	12,359	158.35	15.32 oc	2.30 ic			13.02 s	39.14					54.47
3.40	12,672	158.40	15.57 oc	2.25 ic			13.32 s	42.65					58.22
3.45	12,986	158.45	15.73 oc	2.18 ic			13.55 s	46.25					61.98
3.50	13,300	158.50	15.90 oc	2.12 ic			13.78 s	49.95					65.85
3.55	13,658	158.55	16.01 oc	2.05 IC			13.95 s	53.74					69.75
3.60	14,017	158.60	16.04 oc	1.98 ic			14.06 s	57.63					73.66
3.65	14,375	158.65	17.35 oc	2.10 ic			15.24 s	61.60					78.95
3.70	14,734	158.70	18.94 oc	2.27 IC			16.67 s	65.66					84.60
3.75	15,092	158.75	20.45 oc	2.41 IC			18.04 s	69.81					90.26
3.80	15,451	158.80	21.91 oc	2.54 IC			19.36 s	74.04					95.94
3.85	15,809	158.85	23.31 oc	2.66 IC			20.65 s	78.35					101.66
3.90	16,168	158.90	24.67 OC	2.76 IC			21.91 s	82.74					107.41
3.95	16,526	158.95	26.00 oc	2.86 IC			23.14 s	87.21					113.21
4.00	16,885	159.00	27.29 oc	2.94 IC			24.34 s	91.76					119.05
4.05	17,325	159.05	28.56 OC	3.02 ic			25.53 S	96.39					124.95
4.10	17,764	159.10	29.80 oc	3.09 IC			26.70 s	101.09					130.89
4.15	18,204	159.15	31.02 00	3.16 IC			27.85 S	105.87					136.88
4.20	18,643	159.20	32.21 00	3.22 IC			28.99 s	110.72					142.93
4.25	19,083	159.25	33.39 00	3.28 IC			30.11 S	115.64					149.02
4.30	19,523	159.30	34.55 00	3.33 IC			31.22 S	120.63					155.17
4.35	19,962	159.35	35.68 00	3.37 IC			32.31 s	125.69					161.37
4.40	20,402	159.40	36.81 00	3.41 IC			33.39 s	130.82					167.62
4.45	20,842	159.45	37.91 00	3.45 IC			34.46 S	136.01					1/3.92
4.50	21,281	159.50	39.00 oc	3.49 IC			35.51 S	141.28					180.28

...End

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	Dekalb	37.39	1	235	220,352				EX#1
2	Dekalb	37.45	1	200	187,826				PR#1
3	Reservoir	36.73	1	201	187,263	2	158.09	10,744	STORM BASIN #1 ROUTING
3	Reservoir	36.73	1	201	187,263	2	158.09	10,744	STORM BASIN #1 ROUTING
RA					Return P	eriod: 5 Ye	ar	Monday O	ct 4, 2021

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

EX#1

Hydrograph type	= Dekalb	Peak discharge	= 37.39 cfs
Storm frequency	= 5 yrs	Time to peak	= 235 min
Time interval	= 1 min	Hyd. volume	= 220,352 cuft
Drainage area	= 52.200 ac	Runoff coeff.	= 0.4
Intensity	= 1.791 in/hr	Tc by TR55	= 47.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

12

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

PR#1

Hydrograph type	= Dekalb	Peak discharge	= 37.45 cfs
Storm frequency	= 5 yrs	Time to peak	= 200 min
Time interval	= 1 min	Hyd. volume	= 187,826 cuft
Drainage area	= 48.200 ac	Runoff coeff.	= 0.39
Intensity	= 1.992 in/hr	Tc by TR55	= 40.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

STORM BASIN #1 ROUTING

Hydrograph type	= Reservoir	Peak discharge	= 36.73 cfs
Storm frequency	= 5 yrs	Time to peak	= 201 min
Time interval	= 1 min	Hyd. volume	= 187,263 cuft
Inflow hyd. No.	= 2 - PR#1	Max. Elevation	= 158.09 ft
Reservoir name	= BASIN #1	Max. Storage	= 10,744 cuft

Storage Indication method used.

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	Dekalb	44.05	1	235	259,615				EX#1
2	Dekalb	44.13	1	200	221,360				PR#1
3	Reservoir	43.34	1	201	220,797	2	158.19	11,375	STORM BASIN #1 ROUTING
RA	TIONAL.gpw				Return P	eriod: 10 Y	ear	Monday, O	ct 4, 2021

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

EX#1

Hydrograph type	= Dekalb	Peak discharge	= 44.05 cfs
Storm frequency	= 10 yrs	Time to peak	= 235 min
Time interval	= 1 min	Hyd. volume	= 259,615 cuft
Drainage area	= 52.200 ac	Runoff coeff.	= 0.4
Intensity	= 2.110 in/hr	Tc by TR55	= 47.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

PR#1

Hydrograph type	= Dekalb	Peak discharge	= 44.13 cfs
Storm frequency	= 10 yrs	Time to peak	= 200 min
Time interval	= 1 min	Hyd. volume	= 221,360 cuft
Drainage area	= 48.200 ac	Runoff coeff.	= 0.39
Intensity	= 2.348 in/hr	Tc by TR55	= 40.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

STORM BASIN #1 ROUTING

= Reservoir	Peak discharge	= 43.34 cfs
= 10 yrs	Time to peak	= 201 min
= 1 min	Hyd. volume	= 220,797 cuft
= 2 - PR#1	Max. Elevation	= 158.19 ft
= BASIN #1	Max. Storage	= 11,375 cuft
	= Reservoir = 10 yrs = 1 min = 2 - PR#1 = BASIN #1	= ReservoirPeak discharge= 10 yrsTime to peak= 1 minHyd. volume= 2 - PR#1Max. Elevation= BASIN #1Max. Storage

Storage Indication method used.

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	Dekalb	53.18	1	235	313,444				EX#1
2	Dekalb	53.30	1	200	267,349				PR#1
3	Reservoir	52.42	1	201	266,786	2	158.32	12,183	STORM BASIN #1 ROUTING
RATIONAL.gpw					Return P	eriod: 25 Y	ear	Monday, Oo	ot 4, 2021

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

EX#1

Hydrograph type	= Dekalb	Peak discharge	= 53.18 cfs
Storm frequency	= 25 yrs	Time to peak	= 235 min
Time interval	= 1 min	Hyd. volume	= 313,444 cuft
Drainage area	= 52.200 ac	Runoff coeff.	= 0.4
Intensity	= 2.547 in/hr	Tc by TR55	= 47.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

20

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

PR#1

Hydrograph type	= Dekalb	Peak discharge	= 53.30 cfs
Storm frequency	= 25 yrs	Time to peak	= 200 min
Time interval	= 1 min	Hyd. volume	= 267,349 cuft
Drainage area	= 48.200 ac	Runoff coeff.	= 0.39
Intensity	= 2.835 in/hr	Tc by TR55	= 40.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

21

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

STORM BASIN #1 ROUTING

Hydrograph type	= Reservoir	Peak discharge	= 52.42 cfs
Storm frequency	= 25 yrs	Time to peak	= 201 min
Time interval	= 1 min	Hyd. volume	= 266,786 cuft
Inflow hyd. No.	= 2 - PR#1	Max. Elevation	= 158.32 ft
Reservoir name	= BASIN #1	Max. Storage	= 12,183 cuft

Storage Indication method used.

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	Dekalb	67.47	1	235	397,664				EX#1
2	Dekalb	67.63	1	200	339,214				PR#1
3	Reservoir	66.53	1	201	338,651	2	158.51	13,363	STORM BASIN #1 ROUTING
RATIONAL.gpw				Return P	eriod: 100	Year	Monday, Oo	ct 4, 2021	

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

EX#1

Hydrograph type	= Dekalb	Peak discharge	= 67.47 cfs
Storm frequency	= 100 yrs	Time to peak	= 235 min
Time interval	= 1 min	Hyd. volume	= 397,664 cuft
Drainage area	= 52.200 ac	Runoff coeff.	= 0.4
Intensity	= 3.231 in/hr	Tc by TR55	= 47.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

24

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

PR#1

Hydrograph type	= Dekalb	Peak discharge	= 67.63 cfs
Storm frequency	= 100 yrs	Time to peak	= 200 min
Time interval	= 1 min	Hyd. volume	= 339,214 cuft
Drainage area	= 48.200 ac	Runoff coeff.	= 0.39
Intensity	= 3.598 in/hr	Tc by TR55	= 40.00 min
IDF Curve	= NOAA-SOUTHINGTON.IDF	Asc/Rec limb fact	= n/a

25

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

STORM BASIN #1 ROUTING

Hydrograph type	= Reservoir	Peak discharge	= 66.53 cfs
Storm frequency	= 100 yrs	Time to peak	= 201 min
Time interval	= 1 min	Hyd. volume	= 338,651 cuft
Inflow hyd. No.	= 2 - PR#1	Max. Elevation	= 158.51 ft
Reservoir name	= BASIN #1	Max. Storage	= 13,363 cuft

Storage Indication method used.

Hydraflow Rainfall Report

Hydraflow Hydrographs by Intelisolve v9.1

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)									
(Yrs)	В	D	E	(N/A)						
1	19.5355	3.9000	0.7174							
2	22.3728	3.5000	0.7068							
3	0.0000	0.0000	0.0000							
5	30.1622	3.8000	0.7190							
10	35.8238	3.8000	0.7210							
25	43.6468	3.8000	0.7233							
50	49.5764	3.8000	0.7237							
100	55.5061	3.8000	0.7239							

File name: NOAA-SOUTHINGTON.IDF

Intensity = B / (Tc + D)^E

Return Period	n Intensity Values (in/hr)											
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	4.07	2.96	2.37	2.00	1.75	1.56	1.41	1.30	1.20	1.12	1.05	0.99
2	4.93	3.55	2.85	2.40	2.10	1.87	1.69	1.55	1.44	1.34	1.26	1.19
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.32	4.57	3.66	3.09	2.69	2.40	2.17	1.99	1.84	1.72	1.61	1.52
10	7.47	5.40	4.32	3.64	3.18	2.83	2.56	2.35	2.17	2.02	1.90	1.79
25	9.05	6.54	5.23	4.41	3.84	3.42	3.10	2.84	2.62	2.44	2.29	2.16
50	10.27	7.42	5.93	5.00	4.36	3.88	3.51	3.22	2.97	2.77	2.60	2.45
100	11.50	8.30	6.64	5.59	4.87	4.34	3.93	3.60	3.33	3.10	2.91	2.74

Tc = time in minutes. Values may exceed 60.

	Precip. file name: NOAA-SOUTHINGTON (SO END RD).pcp								
	Rainfall Precipitation Table (in)								
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
SCS 24-hour	2.77	3.42	0.00	4.49	5.38	6.61	7.55	8.50	
SCS 6-Hr	1.91	2.30	0.00	2.93	3.45	4.17	4.73	5.28	
Huff-1st	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00	
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-Indy	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00	
Custom	0.00	1.75	0.00	2.80	3.90	5.25	6.00	7.10	

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

NOAA Atlas 14, Volume 10, Version 3 Location name: Southington, Connecticut, USA* Latitude: 41.6342°, Longitude: -72.8666° Elevation: 301.42 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Average	recurrence	interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.343	0.414	0.530	0.626	0.759	0.859	0.963	1.08	1.24	1.37
	(0.266-0.438)	(0.321-0.529)	(0.410-0.680)	(0.481-0.809)	(0.564-1.03)	(0.626-1.19)	(0.681-1.39)	(0.725-1.60)	(0.803-1.91)	(0.867-2.16)
10-min	0.486	0.587	0.751	0.888	1.08	1.22	1.36	1.53	1.76	1.94
	(0.377-0.621)	(0.455-0.750)	(0.580-0.964)	(0.682-1.15)	(0.799-1.45)	(0.887-1.69)	(0.965-1.96)	(1.03-2.26)	(1.14-2.70)	(1.23-3.06)
15-min	0.572	0.690	0.883	1.04	1.26	1.43	1.60	1.80	2.07	2.28
	(0.444-0.730)	(0.535-0.882)	(0.682-1.13)	(0.802-1.35)	(0.941-1.71)	(1.04-1.98)	(1.14-2.31)	(1.21-2.66)	(1.34-3.18)	(1.45-3.60)
30-min	0.781	0.940	1.20	1.42	1.71	1.94	2.17	2.43	2.80	3.09
	(0.606-0.996)	(0.729-1.20)	(0.927-1.54)	(1.09-1.83)	(1.27-2.32)	(1.41-2.68)	(1.54-3.13)	(1.63-3.60)	(1.81-4.30)	(1.96-4.87)
60-min	0.990	1.19	1.52	1.79	2.16	2.44	2.74	3.06	3.53	3.90
	(0.768-1.26)	(0.922-1.52)	(1.17-1.94)	(1.37-2.31)	(1.61-2.92)	(1.78-3.38)	(1.94-3.94)	(2.06-4.54)	(2.28-5.43)	(2.47-6.14)
2-hr	1.29	1.54	1.96	2.30	2.77	3.13	3.50	3.93	4.56	5.08
	(1.01-1.64)	(1.20-1.96)	(1.52-2.49)	(1.78-2.95)	(2.08-3.74)	(2.30-4.32)	(2.50-5.04)	(2.65-5.80)	(2.96-6.99)	(3.23-7.96)
3-hr	1.49	1.79	2.27	2.67	3.22	3.63	4.06	4.58	5.34	5.97
	(1.17-1.89)	(1.40-2.26)	(1.77-2.88)	(2.07-3.41)	(2.42-4.33)	(2.67-5.00)	(2.92-5.85)	(3.10-6.73)	(3.47-8.15)	(3.80-9.33)
6-hr	1.89	2.28	2.91	3.44	4.17	4.71	5.29	5.99	7.05	7.95
	(1.49-2.37)	(1.79-2.86)	(2.28-3.68)	(2.68-4.37)	(3.16-5.58)	(3.50-6.47)	(3.83-7.61)	(4.06-8.76)	(4.60-10.7)	(5.07-12.4)
12-hr	2.33	2.85	3.70	4.41	5.38	6.09	6.87	7.83	9.31	10.6
	(1.85-2.90)	(2.25-3.56)	(2.92-4.64)	(3.45-5.56)	(4.09-7.17)	(4.55-8.35)	(5.01-9.88)	(5.33-11.4)	(6.10-14.1)	(6.77-16.4)
24-hr	2.73	3.40	4.50	5.42	6.67	7.59	8.61	9.91	12.0	13.8
	(2.17-3.38)	(2.71-4.22)	(3.57-5.61)	(4.27-6.79)	(5.12-8.88)	(5.72-10.4)	(6.35-12.4)	(6.77-14.4)	(7.87-18.1)	(8.86-21.2)
2-day	3.06	3.89	5.25	6.37	7.92	9.05	10.3	12.0	14.8	17.3
	(2.45-3.76)	(3.11-4.79)	(4.18-6.49)	(5.05-7.94)	(6.13-10.5)	(6.88-12.4)	(7.70-14.9)	(8.22-17.3)	(9.75-22.2)	(11.2-26.5)
3-day	3.32	4.24	5.73	6.98	8.69	9.92	11.3	13.2	16.4	19.2
	(2.67-4.07)	(3.40-5.20)	(4.59-7.07)	(5.55-8.66)	(6.74-11.5)	(7.58-13.6)	(8.49-16.4)	(9.07-19.0)	(10.8-24.5)	(12.4-29.4)
4-day	3.56	4.54	6.14	7.46	9.28	10.6	12.1	14.1	17.5	20.5
	(2.87-4.36)	(3.66-5.56)	(4.92-7.54)	(5.95-9.23)	(7.22-12.3)	(8.11-14.5)	(9.08-17.5)	(9.69-20.3)	(11.5-26.1)	(13.2-31.2)
7-day	4.25	5.34	7.12	8.60	10.6	12.1	13.8	16.0	19.6	22.8
	(3.45-5.18)	(4.33-6.51)	(5.75-8.71)	(6.89-10.6)	(8.29-14.0)	(9.28-16.4)	(10.3-19.7)	(11.0-22.8)	(13.0-29.1)	(14.7-34.6)
10-day	4.95	6.10	7.97	9.53	11.7	13.2	15.0	17.2	20.8	24.0
	(4.02-6.00)	(4.95-7.40)	(6.45-9.72)	(7.66-11.7)	(9.11-15.2)	(10.1-17.8)	(11.2-21.2)	(11.9-24.5)	(13.8-30.9)	(15.6-36.4)
20-day	7.14 (5.84-8.60)	8.35 (6.82-10.1)	10.3 (8.40-12.5)	12.0 (9.67-14.6)	14.2 (11.1-18.3)	15.9 (12.2-21.0)	17.7 (13.2-24.5)	19.9 (13.8-28.1)	23.2 (15.5-34.1)	26.0 (16.9-39.2)
30-day	8.97 (7.36-10.8)	10.2 (8.36-12.3)	12.2 (9.98-14.7)	13.9 (11.3-16.9)	16.2 (12.7-20.7)	17.9 (13.7-23.5)	19.8 (14.6-27.0)	21.8 (15.2-30.7)	24.8 (16.6-36.4)	27.3 (17.8-40.9)
45-day	11.2 (9.25-13.4)	12.5 (10.3-15.0)	14.6 (11.9-17.5)	16.3 (13.3-19.7)	18.7 (14.7-23.6)	20.5 (15.7-26.6)	22.4 (16.5-30.1)	24.3 (17.0-34.0)	26.9 (18.1-39.2)	28.9 (18.9-43.3)
60-day	13.1 (10.8-15.6)	14.4 (11.9-17.2)	16.6 (13.6-19.9)	18.4 (15.0-22.1)	20.8 (16.3-26.2)	22.7 (17.4-29.2)	24.6 (18.1-32.8)	26.4 (18.6-36.9)	28.8 (19.4-41.8)	30.5 (19.9-45.5)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at low er and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the low er bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 41.6342°, Longitude: -72.8666°

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Sep 11 02:53:00 2019

2-day

3-day

4-day

7-day 10-day

20-day

30-day

45-day 60-day

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

<u>Disclaimer</u>

NOAA Atlas 14, Volume 10, Version 2 Location name: Southington, Connecticut, USA* Latitude: 41.5616°, Longitude: -72.8716° Elevation: 151.56 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval ((years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.08	4.93	6.32	7.49	9.08	10.3	11.5	13.1	15.0	16.6
	(3.19-5.14)	(3.85-6.22)	(4.92-8.02)	(5.80-9.54)	(6.79-12.1)	(7.56-14.1)	(8.21-16.5)	(8.80-19.1)	(9.76-22.9)	(10.5-25.8)
10-min	2.89	3.49	4.48	5.30	6.43	7.30	8.17	9.25	10.7	11.7
	(2.26-3.64)	(2.72-4.40)	(3.49-5.68)	(4.10-6.76)	(4.81-8.60)	(5.35-10.0)	(5.81-11.7)	(6.23-13.5)	(6.91-16.2)	(7.42-18.3)
15-min	2.26	2.74	3.52	4.16	5.04	5.73	6.41	7.25	8.36	9.20
	(1.77-2.86)	(2.14-3.46)	(2.74-4.45)	(3.22-5.30)	(3.78-6.75)	(4.20-7.84)	(4.56-9.14)	(4.89-10.6)	(5.42-12.7)	(5.82-14.3)
30-min	1.56	1.87	2.40	2.83	3.42	3.88	4.34	4.91	5.67	6.24
	(1.22-1.96)	(1.46-2.37)	(1.86-3.03)	(2.19-3.61)	(2.56-4.58)	(2.85-5.32)	(3.09-6.19)	(3.31-7.20)	(3.67-8.63)	(3.95-9.71)
60-min	0.990	1.19	1.52	1.79	2.16	2.45	2.74	3.10	3.58	3.94
	(0.773-1.25)	(0.929-1.50)	(1.18-1.92)	(1.38-2.28)	(1.62-2.89)	(1.80-3.36)	(1.95-3.91)	(2.09-4.54)	(2.32-5.45)	(2.49-6.13)
2-hr	0.649	0.776	0.983	1.16	1.39	1.58	1.76	1.99	2.30	2.54
	(0.510-0.812)	(0.610-0.972)	(0.770-1.24)	(0.899-1.46)	(1.05-1.85)	(1.16-2.15)	(1.26-2.50)	(1.35-2.90)	(1.50-3.49)	(1.61-3.93)
3-hr	0.501	0.600	0.760	0.893	1.08	1.22	1.36	1.54	1.79	1.98
	(0.396-0.625)	(0.473-0.749)	(0.597-0.952)	(0.697-1.13)	(0.814-1.43)	(0.901-1.65)	(0.977-1.93)	(1.05-2.24)	(1.17-2.70)	(1.26-3.05)
6-hr	0.319	0.383	0.489	0.576	0.697	0.789	0.882	1.01	1.18	1.31
	(0.254-0.395)	(0.304-0.475)	(0.387-0.609)	(0.453-0.722)	(0.530-0.919)	(0.589-1.07)	(0.639-1.25)	(0.687-1.46)	(0.770-1.77)	(0.833-2.00)
12-hr	0.196	0.238	0.307	0.364	0.444	0.504	0.565	0.653	0.769	0.857
	(0.156-0.241)	(0.190-0.293)	(0.244-0.380)	(0.288-0.454)	(0.340-0.583)	(0.379-0.680)	(0.413-0.798)	(0.446-0.938)	(0.504-1.15)	(0.549-1.31)
24-hr	0.115	0.143	0.187	0.224	0.275	0.315	0.354	0.415	0.496	0.557
	(0.093-0.141)	(0.115-0.174)	(0.150-0.230)	(0.179-0.277)	(0.213-0.361)	(0.238-0.424)	(0.262-0.501)	(0.284-0.593)	(0.326-0.736)	(0.358-0.844)
2-day	0.065	0.082	0.109	0.132	0.163	0.188	0.212	0.253	0.307	0.347
	(0.053-0.079)	(0.066-0.099)	(0.088-0.133)	(0.106-0.162)	(0.127-0.214)	(0.143-0.252)	(0.158-0.300)	(0.174-0.359)	(0.202-0.453)	(0.224-0.523)
3-day	0.047	0.059	0.080	0.096	0.119	0.137	0.155	0.186	0.226	0.257
	(0.038-0.057)	(0.048-0.072)	(0.064-0.097)	(0.078-0.118)	(0.093-0.156)	(0.105-0.184)	(0.116-0.220)	(0.128-0.263)	(0.149-0.333)	(0.166-0.385)
4-day	0.038	0.048	0.064	0.077	0.096	0.110	0.124	0.148	0.181	0.205
	(0.031-0.046)	(0.039-0.058)	(0.052-0.077)	(0.062-0.094)	(0.075-0.124)	(0.085-0.147)	(0.093-0.175)	(0.102-0.210)	(0.120-0.265)	(0.133-0.307)
7-day	0.026	0.032	0.042	0.051	0.063	0.072	0.081	0.096	0.115	0.130
	(0.021-0.031)	(0.026-0.038)	(0.035-0.051)	(0.041-0.062)	(0.049-0.081)	(0.055-0.095)	(0.061-0.113)	(0.066-0.134)	(0.077-0.168)	(0.084-0.194)
10-day	0.021	0.026	0.033	0.039	0.048	0.055	0.061	0.072	0.086	0.096
	(0.017-0.025)	(0.021-0.031)	(0.027-0.040)	(0.032-0.048)	(0.038-0.062)	(0.042-0.072)	(0.046-0.085)	(0.050-0.101)	(0.057-0.125)	(0.062-0.143)
20-day	0.015	0.018	0.022	0.025	0.029	0.033	0.037	0.041	0.048	0.052
	(0.012-0.018)	(0.014-0.021)	(0.018-0.026)	(0.020-0.030)	(0.023-0.037)	(0.025-0.043)	(0.027-0.049)	(0.029-0.057)	(0.032-0.069)	(0.034-0.077)
30-day	0.013	0.014	0.017	0.019	0.022	0.025	0.027	0.030	0.034	0.037
	(0.010-0.015)	(0.012-0.017)	(0.014-0.020)	(0.016-0.023)	(0.018-0.028)	(0.019-0.032)	(0.020-0.036)	(0.021-0.042)	(0.023-0.049)	(0.024-0.054)
45-day	0.010	0.012	0.014	0.015	0.017	0.019	0.021	0.022	0.025	0.026
	(0.009-0.012)	(0.010-0.014)	(0.011-0.016)	(0.012-0.018)	(0.014-0.021)	(0.015-0.024)	(0.015-0.027)	(0.016-0.031)	(0.017-0.035)	(0.017-0.038)
60-day	0.009	0.010	0.012	0.013	0.014	0.016	0.017	0.018	0.020	0.021
	(0.008-0.011)	(0.008-0.012)	(0.010-0.014)	(0.011-0.015)	(0.011-0.018)	(0.012-0.020)	(0.013-0.022)	(0.013-0.025)	(0.013-0.028)	(0.014-0.031)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at low er and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the low er bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 41.5616°, Longitude: -72.8716°

NOAA Atlas 14, Volume 10, Version 2

Created (GMT): Thu Jan 11 16:09:36 2018

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

<u>Disclaimer</u>

